User Tools

Site Tools


index

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
index [2022/01/30 18:13]
till
index [2024/01/15 21:55] (current)
till
Line 39: Line 39:
 ---- ----
  
 +
 +===== License and citation =====
  
 FitPy is **free and open source** licensed under a [[.:license|BSD 2-clause license]]. However, if you use FitPy for your own research, please cite it appropriately: FitPy is **free and open source** licensed under a [[.:license|BSD 2-clause license]]. However, if you use FitPy for your own research, please cite it appropriately:
  
-Till Biskup. FitPy (2022). [[https://doi.org/10.5281/zenodo.5920380|doi:10.5281/zenodo.5920380]]+  * Till Biskup. FitPy (2024). [[https://doi.org/10.5281/zenodo.5920380|doi:10.5281/zenodo.5920380]]
  
 As FitPy is based on the SciPy and lmfit packages, you are highly encouraged to cite these two packages as well: SciPy: [[https://doi.org/10.1038/s41592-019-0686-2|doi:10.1038/s41592-019-0686-2]], lmfit: [[https://doi.org/10.5281/zenodo.598352|doi:10.5281/zenodo.598352]]. As FitPy is based on the SciPy and lmfit packages, you are highly encouraged to cite these two packages as well: SciPy: [[https://doi.org/10.1038/s41592-019-0686-2|doi:10.1038/s41592-019-0686-2]], lmfit: [[https://doi.org/10.5281/zenodo.598352|doi:10.5281/zenodo.598352]].
 +
 +
 +===== News =====
 +
 +Note: The most up-to-date information can be found in the [[https://docs.fitpy.de/changelog.html|changelog]] included in the [[https://docs.fitpy.de/|package documentation]].
 +
 +  * 2024-01-15: **FitPy v0.1.1 released**
 +    * [[https://github.com/tillbiskup/fitpy/releases/tag/v0.1.1|Changelog (GitHub)]]
 +  * 2022-01-30: **FitPy v0.1.0 released**
 +    * [[https://github.com/tillbiskup/fitpy/releases/tag/v0.1.0|Changelog (GitHub)]]
 +
 +
 +----
 +
 +
 +**A note on the logo:** The logo shows a Latin square, usually attributed to Leonhard Euler. In the context of statistical sampling, a Latin square consists of only one sample in each row and each column. Its //n//-dimensional generalisation, the Latin hypercube, is used to generate a near-random sample of parameter values from a multidimensional distribution in statistics, //e.g.//, for obtaining sets of starting parameters for minimisation and fitting tasks. The logo shows a snake (obviously a Python) distributed such over a 4x4 square that it visits each row and each column only once. The copyright of the logo belongs to J. Popp.
  
index.1643562810.txt.gz ยท Last modified: 2022/01/30 18:13 by till